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ABSTRACT: Solid-state white-light emission was achieved from polystyrene (PS)
microbeads incorporated with fluorophores based on perylene bisimide (PBITEG)
and oligo(p-phenylenevinylene) (OPV) as acrylic cross-linkers. The PS beads in-
corporated with only PBITEG gave intense orange-red emission; PS incorporated
with OPV exhibited blue-emission, whereas a series of polymers incorporating both
cross-linkers exhibited varying shades of white-light emission. One of the PS
samples, PS-PBITEG-6.25-OPV-4.28 (PBITEG incorporation: 6.25 × 10−7 mole;
OPV incorporation: 4.28 × 10−7 mol), exhibited pure white-light emission in the
powder form with CIE coordinates (0.33, 0.32). The rigid aromatic cross-linkers
were incorporated into the PS backbone in a two-stage dispersion polymerization
to afford PS beads in the size range 2 to 3 μm. The incorporation of fluorophores as
cross-linkers enabled covalent attachment of the dye to the polymer backbone,
avoiding dye leakage besides avoiding aggregation-induced fluorescence quenching.

■ INTRODUCTION

Fluorescent materials have attracted wide attention because of
their potential application in different research areas in chem-
istry and biology.1−4 White-light-emitting luminescent materials
(organic, inorganic and polymeric) have been the subject of
intense research for the past decade due to their application in
LEDs,5,6 panel displays,7,8 color-tuning materials,9,10 and solid-
state lighting.7,11,12 The basic requirement for white-light
emission is the combination of emission of the three primary
colors, that is, blue, green, and red in a particular intensity that
covers the visible wavelength range from 400 to 700 nm.
According to the Commission Internationale d’Eclairage (CIE)
chromaticity diagram,13 white light can be achieved by careful
tuning of contribution of each color and by varying the distance
between the different dye components, leading to Förster
resonance energy transfer (FRET) in the required sys-
tems.5,14−17 Many researchers have developed fully organic/
polymeric materials emitting white light mostly in the solution
state.18−20 A few reports are available for solid-state-based white-
light-emitting thin films and powder based on small
molecules,21,22 quantum dots,23,24 organogels,25,26 metal organic
frameworks,27 nanofibers,28 micro29 and nanoparticles,30

lanthanides,31,32 and crystals.9,33 Conjugated polymers based
on poly(p-phenylenevinylenes) (PPV) and oligo(p-phenyl-
enevinylene) (OPV), perylene bisimide (PBI), polythiophenes
(PTh), polyfluorenes (PF), and benzthiadiazoles also have
contributed toward light-harvesting systems because of their
potential ability as donor and acceptor materials.10,29,34,35

Supramolecular self-assembly of the donor and acceptor to
achieve FRET-based white-light emission is a widely studied area

in the field of material chemistry.5,36,37 Achieving white-light
emission from a single polymer is quite a challenging task.38

Utilizing a combination of blue-emitting oligo(fluorene), green-
emitting oligo (p-phenylenevinylene) and red-emitting perylene,
Schenning and coworkers presented the white-light-emitting
hydrogen-bonded supramolecular copolymers.36,39 Reports
show that tunable luminescence can be obtained from silicon-
linked polystyrene (PS) hybrid materials by quantum confine-
ment effects.40−42 Fluorescence quenching due to aggregation of
chromophores is one of the biggest challenges plaguing the
device application of most of the organic light emitting materials.
Several strategies have been reported to overcome this problem
in literature.43,44 Controlling emission by encapsulating the dye/
quantum dots in block copolymers, thereby inhibiting energy
transfer, also has been a strategy for obtaining emission from
pure nonaggregated species.45,46 In a previous report from our
group, we had shown the solid-state emission from PS beads
incorporated with PBI- and OPV-based cross-linkers in a two-
stage dispersion polymerization strategy.47 The chromophores
were isolated in the polymer matrix, thereby inhibiting
aggregation-induced fluorescence quenching or FRET-based
emission color tuning. Here we report tunable emission colors as
well as solid-state white-light emission with high quantum yield
from PS beads containing both blue-emitting OPV and orange-
emitting PBI, which were covalently incorporated as cross-
linkers. Single polymer-based solid-state white light (CIE
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coordinates; X = 0.33, Y = 0.32) as well as multicolor emission
is reported. The isolated blue-emitting OPV and new orange-
red-emitting PBI were covalently incorporated into PS beads as
cross-linkers. By changing the feed ratio of both the OPV and
PBITEG chromophores, we could tune the color in the solid
state from blue to white and orange-red. To the best of our
knowledge, this is the first example of solid-state white-light
emission from a single polymer system, where chromophore
isolation was used as the strategy to obtain multiple emission
from different RGB components.

■ MATERIALS

Perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), zinc ac-
etate, imidazole, poly(vinylpyrrolidone) (PVP, Mw 360 000 g/mol),
acrylic acid, 4-methoxyphenol, 2-ethylhexyl bromide, triethyl-
phosphite, 4-hydroxybenzaldehyde, and potassium tert-butoxide
were purchased from Aldrich and used without further
purifications. Styrene (Aldrich) was washed with sodium
hydroxide, followed by water, dried overnight using calcium
chloride, and vacuum distilled before use. HBr in glacial acetic
acid, para-formaldehyde, potassium carbonate, potassium iodide,
dimethyl sulfoxide, N,N-dimethylformamide (DMF), tetrahy-
drofuran (THF), dichloromethane (DCM), and 2-chloroethanol
were purchased from Merck and purified using standard pro-
cedures. Triton X-100 (70% solution in water) and 2,2′-
azobis(isobutyronitrile) (AIBN) were purchased from Merck,
and the latter was recrystallized from methanol.
Measurements. 13C and 1H NMR spectra were recorded in

CDCl3 using Bruker AVENS 400 MHz spectrophotometer.
Chemical shifts (δ) are reported at 298 K, with trace amount of
tetramethylsilane (TMS) as internal standard. PBITEG was
characterized using MALDI-TOF analysis on a Voyager-
De-STRMALDI-TOF (Applied Biosystems, Framingham, MA)
instrument equipped with 337 nm pulsed nitrogen laser in
reflectant mode with an accelerating voltage of 25 kV. The
sample in THF (micromoles) was mixed with dithranol and
spotted on stainless-steel MALDI plate. The molecular-weight
estimation of the polymers was carried out on a polymer lab
PL-220 GPC instrument in chloroform using standards for
calibration. 2 to 3 mg of the sample dissolved in chloroform was
filtered and injected for recording the chromatograms at 30 °C,
where the flow rate of chloroform was maintained as 1 mL.
Thermal characterizations like thermogravimetric analysis
(TGA) were performed using a PerkinElmer STA 6000 thermo-
gravimetric analyzer by heating the samples from 40−800 °C at a
heating rate of 10 °C/min under nitrogen. Absorption spectra were
recorded using PerkinElmer Lambda 35 UV-spectrophotometer.

Steady-state fluorescence studies were performed using Horiba
Jobin Yvon Fluorolog 3 spectrophotometer having a 450 W
xenon lamp. The settings were as previously described.47 The
solid-state quantum yield was measured using a model F-3029,
Quanta-Phi 6″ integrating sphere connected to a Horiba Jobin
Yvon Fluorolog 3 spectrophotometer. FEI, QUANTA 200 3D
scanning electron microscope with tungsten filament as electron
source was used for recording SEM images. Ethanol dispersion of
polymer samples (1 mg/2 mL) was drop cast on silicon wafers,
which were dried at room temperature in air for 12 h prior to
applying a 5 nm thick gold coating. A Zetasizer ZS 90 apparatus
utilizing 633 nm red laser (at 90° angle) from Malvern instru-
ments was used for DLS measurements. A minimum of three
readings were collected using freshly prepared polymer
dispersions in ethanol to check for reproducibility of the data.
The fluorescence microscopic images were taken by Carl Zeiss
inverted fluorescence microscope model AXIO OBSERVER.ZI
using DAPI (350−430 nm blue), Alexa (488−520 green), and
rhodamine (480−580 nm red) filters. Polymer solutions were
prepared as very dilute dispersion in ethanol, which were drop
cast on glass plate, covered with coverslip and directly observed
under fluorescence microscope

Synthesis of Perylene-Bisimide-Based Cross-Linker
(PBITEG). PBITEG was synthesized starting from PBI-TEG
diol, which was synthesized as per literature procedure.48 650 mg
(8.7 × 10−4 mol) of PBI-TEG diol and 0.58 mL (4.3× 10−3 mol)
of Et3N were dissolved in 100 mL of dry DCM in a 250 mL of
two-necked round-bottomed flask. A slow addition of acryloyl
chloride (0.35 mL, 4.3 × 10−3 mol) in DCMwas performed over
a period of 15−20 min in the round-bottomed flask at 0 °C. The
reaction was slowly brought to room temperature (25 °C) and
allowed to stir for 24 h. The progress of the reaction was
monitored using TLC. The workup of the reaction mixture was
carried out by washing the organic phase with water and brine,
followed by evaporation of the solvent. The compound was
purified by column chromatography in DCM/methanol (1%) as
solvent. Yield = 250 mg (38%). 1H NMR (200 MHz, CDCl3, δ):
8.64 (m, 8H, perylene ring), 6.35 (dd, 2H, acrylic double bond),
6.13 (q, 2H, acrylic double bond), 5.82 (dd, 2H, acrylic double
bond), 4.46 (t, 4H,−OCH2), 4.24 (t, 4H,−NCH2), 3.86 (t, 4H),
3.60−3.71 (m, 20H). 13C NMR (500 MHz, CDCl3, δ): 165.88,
162.95, 134.01, 130.93, 13.75, 128.85, 127.97, 125.78, 122.81,
122.68, 70.41, 70.30, 69.83 68.80, 63.39, 39.03. MALDI-TOF
MS (dithranol matrix): m/z calcd for C46H46N2O14: 850.29;
found 850.29 + 23 [M+Na+] 850.29 [M+K+].

Scheme 1. Synthesis of Perylene-Bisimide-Based Cross-Linker (PBITEG)
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■ RESULT AND DISCUSSION

Synthesis and Characterization. The structure of the
cross-linkers used in the study and the synthesis of the
fluorescent cross-linker based on perylene bisimide (PBITEG)
is shown in Scheme 1. The details of the synthesis to obtain the
final acryloyl functionalized PBITEG cross-linker are given in the
Materials section. The synthesis of oligo(p-phenylenevinylene)
(OPV) was previously reported by us (structure in Scheme 2).47

The details of the complete structural characterization of the
PBITEG cross-linker are provided in S1a−c in the Supporting
Information. The two-stage dispersion polymerization proce-
dure that we followed was described in detail in our previous
publication (also provided in Supporting Information and
Table S1). In short, the styrene was divided into two equal
halves, and the fluorescent cross-linker was added after 1 h of
polymerization along with the second half of styrene. The
amounts of cross-linker were varied from 4.9 to 6.25 μM for
PBITEG and 3.13 to 4.2 μM for OPV (0.13 to 0.51 wt % w.r.t.
styrene) in the feed during the second stage of the polymer-
ization. Two PS samples with single chromophore incorporation
(eitherOPV or PBITEG) were also developed. The cross-linked
PS with PBITEG and OPV was named as the PS-PBITEG-
X-OPV-X, where ‘X’ indicated the amount (in micromoles) of
the respective cross-linker incorporated. The incorporation of
the fluorophores were too low to be detected using NMR
spectroscopic techniques; therefore, absorption spectroscopy
was used to estimate their incorporation based on the molar
exctinction coefficient of the respective cross-linker (PBITEG =
80 600 LM−1 cm−1,OPV = 36 315 LM−1 cm−1).47 The extremely

low incorporation (∼10−7 moles) of the cross-linkers enabled
complete solubilization of the resulting lightly cross-linked
polymers.49 Table 1 compares the moles of fluorophore taken in
feed with their actual incorporation. The molecular weight of
the polymers was determined by SEC using chloroform as the
eluent, and the values are given in Table 1. For comparison, the
molecular weight details of PS alone prepared under identical
conditions are also included in Table 1. The GPC chromatogram
is given in Figure S2 in the Supporting Information. It could be
seen from the Table that higher incorporation of the rigid cross-
linker resulted in reduction in the Mw values. The thermal
stability of the cross-linked polymers was determined by TGA
carried out under a nitrogen atmosphere. Supporting Figure S3
in the Supporting Information gives the TGA plot, and Table 1
lists the 5 wt % loss temperature that was observed at 324−345 °C.

Microscopic Characterization. Dynamic light scattering
(DLS) was used to estimate the particle size dispersity of the
cross-linked PS beads, which were examined as ethanol dis-
persions. The single chromophore incorporated PS-OPV-3.88

Table 1. Sample Designation, Number- and Weight-Average Molar Mass, Polydispersity Indices (PDI), Yield, and 5 wt % Loss
Temperature of the PS-PBITEG-X-OPV-X-Based Polymers

sample name moles in feed (10−6) moles incorporated (10−7)a yield (%) Mn
b MW

b PDIb TGA (Td = 5%)c

PS-PBITEG-6.25 3.7 6.25 93 45 900 96 800 2.1 345
PS-PBITEG-6.25-OPV-4.28 3.7 6.25 81 34 600 123 200 3.5 345

3.7 4.28
PS-PBITEG-4.98-OPV-3.6 3.7 4.98 90 28 500 101 700 3.5 345

4.3 3.6
PS-PBITEG-5.4-OPV-3.13 3.7 5.45 92 23 000 64 400 2.8 345

3.14 3.13
PS-PBITEG-7.4-OPV-3.71 4.3 7.4 81 27 300 115 900 4.2 345

3.7 3.71
PS-PBITEG-4.93-OPV-4.15 3.3 4.93 92 20 200 64 700 3.2 345

3.7 4.15
PS-PBITEG-3.84-OPV-4.15 2.8 3.84 86 27 900 94 800 3.4 345

3.7 4.15
PS-OPV-3.88 3.7 3.88 80 24 900 99 000 4 340
PS 90 40 200 124 800 3.1 320

aMeasured in chloroform. bMeasured by size exclusion chromatography (SEC) in chloroform (CHCl3), calibrated with linear, narrow molecular
weight distribution poly styrene standards. cTGA measurements at heating rate of 10 °C/min under nitrogen.

Scheme 2. Structure of Oligo(p-phenylenevinylene)-Based
Cross-Linker (OPV)

Figure 1. Volume−average size distribution of PS-PBITEG-X-OPV-X
series in ethanol dispersion obtained by dynamic light scattering (DLS)
analysis.
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and PS-PBITEG-6.25 samples showed similar average particle
size of 2.3 μm, while the PS beads with both chromophores
exhibited slightly higher size distribution of 3.0 to 4.0 μm.
Figure 1 shows the DLS plots for all the polymers. Figure 2 shows
the SEM images of ethanol dispersed samples of PS-PBITEG-
6.25-OPV-4.28 on glass substrate. It was clear that the particle
size distribution observed in the SEM images was approximately
similar to that obtained from DLS. Figure 3 shows the fluo-
rescence microscope images of ethanol-dispersed samples of PS-
PBITEGA-6.25-OPVA-4.28 on glass substrate using DAPI
(350−430 nm blue), Alexa (488−520 green) and rhodamine
(500−550 nm red) filters. The merged image shows white-light
emission from the PS beads. The fluorescence microscope
images also confirmed the size of the PS beads to be ∼2.6 μm,
consistent with the DLS and SEM observation. Supporting

Information (Figures S4 to S5a,b) shows the SEM and
fluorescence microscope images for all PS beads with varying
amounts of fluorescent cross-linker incorporation.

Photophysical Characterization. The absorption and
emission spectra were recorded in the solid state in powder
form for the polymers. Figure 4 shows images taken of the poly-
mers under a hand-held UV lamp. PS-OPV-3.88 exhibited blue-
light emission; PS-PBITEG-6.25 had yellowish orange emission,
whereas the other polymers incorporating varying amounts
of both fluorophore exhibited white-light emission with varying
shades of whiteness intensity. The absorption spectrum of all
polymers in the powder form recorded in the reflectant mode is
given in the Supporting Figure S6 in the Supporting Information.
Figure 5a shows the solid-state (powder form) emission spectra
of the polymer PS-PBITEG-6.25-OPV-4.28 upon excitation at

Figure 2. SEM image of PS-PBITEG-6.25-OPV-4.28 drop cast on silicon wafer (1 mg/2 mL ethanol dispersion) drop cast on carbon-coated copper
grids.

Figure 3. Fluorescence optical microscopy images of PS-PBITEG-6.25-OPV-4.28 using (a) DAPI (350−430 nm blue), (b) Alexa (488−520 green),
and (c) rhodamine (480−580 nm red) filters and (d) merged image (white).
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350 nm. It showed peaks corresponding to OPV as well as
PBITEG emission in the range 350−500 and 520−675 nm,
respectively. The inset in the Figure shows the photograph of the
white-light emission from the powder sample, as observed under
a hand-held UV lamp. The purity of the white-light emission was
assigned in photochromic terms, as standerdized by Commis-
sion Internationale d’Eclairage, and the CIE coordinates were
obtained as (0.33, 0.32) (Figure 5b), which was quite close
to that of pure white-light emission (0.33, 0.33). The emission in
the powder form of all PS samples upon excitation at 350 nm is
given in Figure 6a, and their CIE chromaticity diagram is
included in Figure 6b. The CIE coordinates varied from (0.15,
0.10) for the blue-emitting PS-OPV-3.88 to (0.45, 0.48) for the
orange-yellow-emitting PS-PBITEG-6.25. (Values are given in
Table 2.) The quantum yield for solid-state emission ϕpowder was
measured using an integrating-sphere Quanta ϕ Horiba
attachment with 490 nm excitation for PBITEG and 350 nm
for OPV, respectively, and the values are given in Table 2.
PS-OPV-3.88 exhibited the quantum-yield value of 0.72 (λexc =
350 nm), while PS-PBITEG-6.25 had a ϕpowder of 0.21 (λexc =
490 nm). The polymers with varying incorporation of both
fluorophores exhibited ϕpowder values ranging from 0.28 to 0.13
for blueOPV emission (λexc = 350 nm; range 360−510 nm) and
0.26 to 0.21 for PBITEG emission in the range 500−700 nm
(λexc = 490 nm). It can be seen from Table 2 that the quantum
yield for PBITEG emission was not much affected by the
presence of theOPV chromophore, whereas considerable reduc-
tion was observed in the OPV emission when PBITEG was also
incorporated into the PS backbone. To understand the reason for
the reduction in the OPV emission quantum yield, a physical
mixture of the two PS polymers having single chromophore
incorporation was studied. Thus, a 1:1 (w/w) physical mixture of
the two polymers PS-OPV-3.88 and PS-PBITEG-6.25 was
made, and its solid-state emission spectra was compared with that
of the polymer having similar molar (covalent) incorporation of
both the chromophore, that is, PS-PBITEG-6.25-OPV-4.28. In
Figure 7, the emission spectra of PS-OPV-3.88, PS-PBITEG-
6.25-OPV-4.28, and the physical mixture of PS-OPV-3.88 and
PS-PBITEG-6.25 are compared. The same spectrum after
normalization at the OPV emission maxima ∼430 nm is also
included in the Figure. It could be clearly observed that a

reduction in OPV emission intensity with a change in peak
shape occurred in both the physical mixture (black line) and PS-
PBITEG-6.25-OPV-4.28 (magenta line) compared with the
OPV alone polymer PS-OPV-3.88. The Figure also shows the
emission from the PBITEG alone polymer, that is, PS-PBITEG-
6.25, upon excitation at 350 nm (blue line) as well as 490 nm
(green line). Excitation at 350 nm corresponding to the OPV
absorption maxima also resulted in excitation of PBITEG; selec-
tive excitation of OPV was not possible in the system. Figure 8
shows the excitation spectra of PS-PBITEG-6.25-OPV-4.28,
PS-PBITEG-6.25, and the physical mixture of PS-OPV-3.88
and PS-PBITEG-6.25, collected at 576 nm. The Figure also
shows the excitation spectra collected for PS-OPV-3.88 at 433
nm. The absence of OPV absorption from the PS-PBITEG-
6.25-OPV-4.28 as well as the physical mixture of PS-OPV-
3.88 and PS-PBITEG-6.25 demonstrated the absence of ene-
rgy transfer between the OPV and PBITEG chromophores.
The comparison of excitation spectrum of all polymers with
PS-OPV-3.88 and PS-PBITEG-6.25-PS-OPVA-4.28 is also

Figure 4. Images of the powdered samples of all polymers PS-PBITEG-
X-OPV-X under (top) normal and (bottom) UV light.

Figure 5. (a) Emission spectra in the solid state (powder) for
PS-PBITEG-6.25-OPV-4.28 upon excitation at 350 nm. (Inset:
photograph of the white emitting powder under hand-held UV lamp).
(b) Corresponding CIE coordinate diagram (0.33, 0.32).
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given in the Figure S7 in the Supporting Information. These facts
suggested that energy transfer from OPV to PBITEG could not
have been the reason for the observed change of shape of the
OPV emission spectra as well as the observation of PBITEG
emission upon excitation of theOPV chromophore. Fluorescence

emission lifetime decay studies were undertaken by excitation
using a LED of 339 nm, and collecting the data at 412 nm.
Supporting Figure S8 in the Supporting Information shows
the lifetime decay profiles of four polymers PS-OPV-3.88,
PS-PBITEG-3.84-OPV-4.15, PS-PBITEG-4.93-OPV-4.15,
and PS-PBITEG-7.4-OPV-3.71 in the powder state, and the
fit values are given in Supporting Table S2 in the Supporting
Information. Although the decay of all polymers were best fitted
using a triexponential fit, the most prominent species (α3 = 0.98)
in the OPV alone polymer, PS-OPV-3.88, had a lifetime of
0.1 ns. The lifetime decay of the polymers with both OPV and
PBITEG incorporation was complicated by more than two
species that decayed with different lifetimes. The fact that
selective excitation ofOPV chromophore alone was not possible
using excitation source near 340 nm could be the reason for the
presence of multiple emitting species. Thus, the fluorescence
lifetime decay data could not give a conclusive evidence of ab-
sence of energy transfer. However, one more indirect evidence of
absence of energy transfer to be the cause of the reduction in
fluorescence emission intensity and change in shape of emission
from OPV was obtained by comparing the emission spectra of
theOPV alone polymer in the form of thin drop cast film as well
as in powder. Figure 9 compares the normalized (at 412 nm)
emission spectra of the OPV alone polymer PS-OPV-3.88
collected both in the powder form as well as drop cast from
chloroform. A change in peak shape as well as reduction in
fluorescence intensity was observed for the chloroform drop cast
film similar to that observed for the PS-PBITEG-OPV polymers.

Figure 6. (a) Solid-state (powder) emission spectra of the cross-linked
PS-PBITEG-X-OPV-X series upon excitation at 350 nm and (b)
corresponding CIE coordinate diagram.

Table 2. Photoluminescence Quantum Yield in Powder Form
and Corresponding CIE Coordinates

solid-state
quantum yield (ϕ)

CIE color
coordinate

sample name λex=350nm λex=490nm X Y

OPV-cross-linker 0.02
PBITEG-cross-linker 0.06
PS-OPV-3.88 0.72 0.15 0.1
PS-PBITEG-6.25 0.21 0.45 0.48
PS-PBITEG-5.4-OPV-3.13 0.22a 0.23b 0.30 0.26
PS-PBITEG-6.25-OPV-4.28 0.13a 0.23b 0.33 0.32
PS-PBITEG-4.98-OPV-3.6 0.27a 0.25b 0.29 0.24
PS-PBITEG-3.84-OPV-4.15 0.28a 0.26b 0.26 0.22
PS-PBITEG-4.93-OPV-4.15 0.26a 0.25b 0.28 0.24
PS-PBITEG-7.4-OPV-3.71 0.18a 0.21b 0.30 0.26
PS-PBITEG-6.25+PS-OPV-3.88
(Physical Mix)

0.24 0.18

aSelected wavelength range: 360−510 nm. bSelected wavelength
range: 500−700 nm.

Figure 7. (a) Solid-state emission spectra upon excitation at 350 nm
for PS-OPV-3.88, PS-PBITEG-6.25-OPV-4.28, physical mixture of
PS-PBITEG-6.25+PS-OPV-3.88, along with that of PS-PBITEG-3.2
(excitation at 490 nm). (b) Same spectra after normalization at the OPV
emission maxima of ∼430 nm.
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These data indicated that the OPV chromophore was extremely
sensitive to the surrounding, and some changes in the packing
might be the cause of this change in the shape of the emission
spectra collected in the film compared with that in powder.50 The
influence of the aromatic styrene rings of the PS backbone
affecting the packing of the OPV rings also cannot be ruled out.
We had previously demonstrated that incorporation of the OPV
cross-linker into a nonaromatic polymer backbone like that
of poly(methyl methacrylate) (PMMA) did not exhibit any shift
or change of shape of the OPV chromophore absorption or
emission in solution.47 However, when PBITEG was also
introduced into the backbone of PMMA along withOPV (details
of synthesis are given in the Supporting Information), drastic
changes in the emission of theOPV chromophore was observed
in powder form. Figure 10 compares the emission spectra re-
corded in the powder form for PMMA-OPV-2.5 and PMMA−
PBITEG-2.6-OPV-2.5 polymers upon excitation at 350 nm.
The spectrum of PS-OPV-3.88 is also given for comparison.
Nearly ∼18 nm blue shift was observed for the OPV emission in

the presence of PBITEG (459 nm for PMMA-OPV-2.5 vs
441 nm for PMMA−PBITEG-2.6-OPV-2.5), although no shift
was observed for the PBI emission. It was thus evident that OPV
as a chromophore was extremely sensitive to its environment as
well as packing, whether it was stacked tightly along with similar
aromatic core like PS or packing influenced by the nature of the
solvent from which it was drop cast to form film or by the
presence of other chromophores like PBI in the vicinity. This
change in the environment or packing was reflected as a change
in the extent of aggregation, leading to fluorescence quenching
and change in spectral pattern in the powder form in the PS-
PBITEG-X-OPV-X polymers.

■ CONCLUSIONS
In summary, we have demonstrated single-polymer-based white-
light and multicolor emission in the solid state. Fluorescent
microbeads in the size range of 2 to 3 μm were produced by
incorporating orange-red emitting PBI and blue emitting
oligo(p-phenylenevinylene) as cross-linkers into the polymer
backbone. Pure white-light emission in the powder form with
CIE coordinates (0.33, 0.32) was achieved with one of the PS
samples having appropriate amounts of OPV and PBITEG -
(PS-PBITEG-6.25-OPV-4.28). The two-stage dispersion poly-
merization method along with the concept of fluorophore as
covalent cross-linker for chromophore isolation affords an easy
and scalable method to produce fluorescently labeled polymer
particles with controlled size from commercial polymers like PS.
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