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ABSTRACT
Exchange isotherms, 35CI NMR spectroscopy, and molecular dynamics

modeling probe different time and distance scales relevant to understanding the
binding of chloride in cement systems. This paper describes an integrated study
of chloride binding to single-phase cement materials using these techniques.
Calcium hydroxide shows significant chloride exchange and provides a useful
reference point for understanding the chloride exchange behavior of C-S-H and
AFm phases.

INTRODUCTION

Binding of cWoride to the hydration products in cement paste is thought to
substantially decrease the rate of cWoride penetration into concrete and to
increase the time needed for it to participate in depassivation of the protective
oxide layer of the reinforcing steel. Previous workers have distinguished three
types of chloride in cement pastes: fTee (solution), sorbed (bound), and lattice
(structural) [1-6]. Sorption is thought to both retard the net rate of transport in
concrete and to provide a reservoir of chloride for potential detrimentaJ damage
[3,7]. The mechanisms of cWoride binding and even the binding capacities of the
relevant phases are not well understood. This paper presents a brief summary of a
combined exchange (sorption) isotherm, 35CI NMR and molecular dynamics
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(MD) modeling study of chloride binding to individual hydrated cement phases
designed to better understand the structural-chemical factors that control the
chloride exchange capacities of the phases present in hydrated cement paste.
Sorption isotherm data provide a macroscopic picture of the total binding capacity
of a given phase, and modeling of the data with multi-layer theory can provide
insight into the sorption mechanisms [8]. The 35Cl NMR techniques provide a

measure of the total binding capacity and insight into the structural environments
of the sorbed chloride and its molecular scale dynamical behavior, significantly
improving understanding of the sorption isotherm data [9,10]. MD models
provide a more specific molecular-scale picture of the surface sorption sites and
the dynamics of the motion of cWoride at and near the surface and thus further
basis for interpreting the isotherms and NMR data [11,12]. Somewhat
surprisingly, calcium hydroxide (portlandite) exhibits significant cWoride
exchange capacity. It provides a useful starting point to understand the chloride
exchange behavior ofC-S-H and AFm phases.

crystal and a layer of 0.25 M NaCI solution 2 to 3 nm thick. This thickness for the
solution layer is large enough to effectively exclude direct influence of one
interface on another under the periodic boundary conditions used, and the number
of water molecules in the layer was chosen to reproduce the density of bulk liquid
water under ambient conditions (~1 glcm3). The interaction parameters were
modified &om the augmented ionic consistent valence force field (CVFF) within
the Cerius2 molecular modeling package (Molecular Simulations Inc., 1998) [13].
Water molecules were modeled using a flexible version of the simple point charge
(SPC) interaction potential. Power spectra of atomic motions in the translationaL
librational, and vibrational &equency ranges and diffusion coefficients for bulk
and surface bound cWorides were calculated &om the Fourier transforms of the
velocity autocorrelation functions.

CHLORIDE BINDING TO PORTLANDITE

EXPERIMENTAL AND COMPUTATIONAL METHODS
The results of the exchange isotherm experiments show that portlandite has the

largest specific exchange capacity (CI atoms/nm2) of all the phases investigated,
exceeding that of even C.ACHII at high solution concentrations (Figure I). The

extent of exchange increases with increasing solution concentration, never reaches
a plateau, and is thus well fit with the Freundlich-type isotherm shown. All 35CI
NMR signals observed for the suspensions are quite narrow, symmetrical peaks
(FWlll-I < 200 Hz). Their widths decrease with increasing solution concentration.
Thus, all the observed cWoride is in rapid exchange (vex> 2 kHz) between the
solution and sorbed states. The chemical shifts are within a ppm of the 1 M NaCl
solution standard set at 0 ppm, indicating a predominantly hydrated, solution-like
local structural environment. In all cases the observed 1'1 and 1'2are identical, as
expected for rapid exchange conditions. The observed 1'1relaxation rates (RI = 1/
1'1)decrease with increasing solution concentration at constant solid/solution ratio
(0.70 gig for portlandite) and approach the value of the neat solution at high
concentrations (Figure 2). 1'1 relaxation rates are well known to increase for
species near water-solid interfaces due to decreased rates of molecular
reorientation [14], and these observations are readily interpreted to indicate that a
progressively decreasing &action of the cWoride in each sample is associated with
the surface as solution concentration increases. The data can be interpreted
quantitatively &om the relationship R.,bs= (l-O)Rr + ORD, where R.,bs,Rr and Rn
are the relaxation rates of the suspension, neat solution and sorbed species; and 0
is the traction of the total chloride that is sorbed [9,15]. R.,bs, and Rr are
experimentally determined (Figure 2), and Ru can be determined by extrapolation
to extreme dilution (here 98.4 Hz for portlandite, about three times the value for
the neat solution). For portlandite the calculated O-values decrease with

The experimental and computational methods used are described in
references 8 - 12. Briefly, the exchange isotherm studies were done at room
temperature by equilibrating portlandite, the carbo aluminate AFm phase

(C4ACHII)' ettringite, jennite, C-S-H samples with analyzed CIS ratios of 1.5 and
0.9, and aluminous C-S-H samples with C/(S+A) ratios of 0.8 and 1.36 with lime
saturated sodium cWoride solutions. Solid/solution ratios were 0.2g125ml, the
cWoride concentrations varied trom 0.005 to 0.1 M, and the pH was about 12.4.
Exchange isotherms were calculated using the standard technique of monitoring
the change in solution concentration before and after exchange. The 35CI NMR

experiments were conducted at Ho = 11.7 T using suspensions of the individual
phases in NaCI or KCI solutions and were monitored for chemical shift and 1'1and
1'2 relaxation rates. Solid/solution ratios varied to provide stable suspensions.
Comparison with the results for neat solutions and suspensions under variable
composition and temperature conditions allow investigation of the behavior of the
bound cWoride. Experiments using variable NaCI solution concentration were
conducted at room temperature for portlandite, C4ACH1J'and jennite. Variable

temperature experiments (temperature between 0 and 60°C) were conducted in 1
M KCI solutions for all the phases listed above.

Molecular dynamics modeling was undertaken for neat 0.25 M NaCI solution,
portlandite, the cWoroaluminate AFm phase (Friedel's salt), ettringite and
tobermorite (model C-S-H) using systems consisting of several unit cells of the
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Figure 2. Observed relationships between the 35CI NMR TI relaxation rate (RI = 11 T1) and solution

concentration for suspensions of portlandite, C4ACHII' and jennite in Ca hydroxide saturated
NaCI solutions, along with data for the neat Ca- hydroxide saturated NaCI solutions. The
differences between the two data sets is related to the extent of chloride sorption and is modeled
by the relationship described in the text. [After Reference 9]
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increasing chloride concentration, in agreement with qualitative expectation. In
contrast, the chloride surface density (CVnm2) increases (Figure 3). and the values
are in excellent quantitative agreement with the sorption isotherms (Figure I).
The variable temperature 35CINMR R, results normalized to unit surface area are
also in excellent qualitative agreement with these observations, showing that only
Friedel's salt (the CI-containing AFm phase) has a greater effect (Figure 4).

Together, the binding isotherm and 35CI NMR data provide significant new
insight into chloride binding on portlandite. Surface densities are up to 60 CVnm2,
equivalent to many mono layers, which would contain between 3 and 9 CVnm2
depending on the atomic packing. The chloride is, however, not tightly bound, but
rather is in a solution-like chemical environment and is in rapid exchange with the
bulk solution at frequencies> 2 kHz. Such high sorption densities and the
solution-like environment suggest that much of the chloride is in the diffuse layer.
Electrical double layer calculations assuming a ~-potential of +20 mY, the largest
ever found for portlandite [17,18] and a solution concentration of about 0.1 M
yield sorption densities of about 0.1 CVnm2. The large difference between this and
the observed values suggests that both sorption closer to the solid surface than the
shear plane relevant to the ~-potential and ion cluster formation (e.g., Ca-CI
clusters) may contribute significantly to the total sorption [19-25]. Ion cluster
formation, which can result in significant co-adsorption and increased sorption for
a given surface charge is expected to be significant at the high concentrations in
the diffuse layer [19-23]. An important conclusion from this work is the need for
increased understanding of the structure of the concentrated, high pH solutions
relevant to cement chemistry.

Molecular dynamics modeling of chloride binding cannot currently investigate
systems larger than a few nm in linear extent, but recent results show that they are
effective in studying molecular scale binding behavior at solid-solution interfaces
[11,12], For portlandite [11] they show that the surface can sorb both chloride
and counter ions (Na + or Cs+ in our simulations) due to the flexibility of the
surface Ca-OH groups (Figure 5). We distinguish three broadly defined types of
aqueous species (Figure 6): I) inner-sphere surface complexes (coordinated
directly to atoms on the solid surface), 2) outer-sphere surface complexes
(separated from the surface by one molecular layer of water), and 3) ions in the
solution (which in our models feel the presence of the surface but are separated
trom it by more than one molecular layer of water). In the case of surface-bound
cr, surface hydroxyl groups are oriented towards the anion, thus forming a nearly
solution-like local environment for the surface-adsorbed cr. On the other hand,
in the case of surface-boundNa+ and Cs+, the surface OH groups tend to point

82 Materials Science of Concrete

0 100 200 300 400 500 600 700
",--- I0

E
;!2. 8

Q 6

(C) 0

0
0Q)

-0
'£::0:au-0
I::
::I
0

~

\1 \1
4"1 0
2-10\1\1

0 -I~\1
0
\1

Binding Isotherm
35CI NMR Relaxation

0 100 200 300 400

Total Solution/Solid (CrJnm2)

500

Figure 3. Fraction of sorbed chloride and chloride surface densities for suspensions of A)
portlanditc, B) C4ACH..

'
and C) jennite determined from the 3sCI NMR relaxation data

presented in Figure 2. For portlandite and
C4ACIIIl the sorption densities are in excellent
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NMR are about 40% lower, but the densities are so low, that the results are probably within
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away trom the cations, thus also creating a favorable electrostatic environments
for adsorption by exposing their negatively charged oxygen atoms.

Power spectra of atomic motions allow comprehensive and detailed analysis of
the ionic dynamics of the surface species. The spectral density of the low
ftequency vibrational motions of cr ions consists of two distinct ftequency bands
centered at approximately 50 and 150 em-I. Because each cWoride ion is H-
bonded to neighboring H2O molecules and/or OH-groups, these two O"'CI"'O
modes are analogous to, respectively, the intermolecular 0",0",0 bending and
stretching motions of water molecules in the H-bonded network of bulk water
[11,12]. The shape of the low ftequency vibrational spectrum of surface-bound
chloride, thus, closely resembles that of cWoride in a bulk aqueous solution. This
is in good agreement with the 35CI NMR results. The situation is quite similar in
the case of the dynamics of surface-adsorbed heavy Cs+ ions, whereas the power
spectra of inner-sphere, outer sphere, and bulk solution Na + are all different in the
simulations [II].

~~ ,. ~ 'A h."" '\111

Figure 6. MD-simulation snapshot of the interface between Friedel's salt [Ca2Al(OH)6]CI 2J-hO
and a -30 A-thick layer of 0.25 m aqueous NaCI solution. The crystal structure is represented by
the shaded octahedral sheets. Water molecules are the arrowhead shaped symbols. Chlorides and
water molecules are ordered in the interlayer, and most surface chlorides occur as inner sphere
complexes. [After Reference II]
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CHLORIDE BINDING TO C-S-H

The extent of chloride sorption on C-S-H is much less than for portlandite, with
a maximum of about 10 ClInm2 (Figure 1). It is lowest for the aluminous
samples (maximum of about 2 ClInm2), is larger for the sample with CIS = 0.9
and is largest for the sample with CIS = 1.5 and for crystalline jennite. These
observations are consistent with previous reports (1,2,26-28). 35CI NMR results
for jennite give sorption densities about 40% lower than those trom the isotherms,
but the values are probably within experimental error (Figures 2 and 3). As for
portlandite, all the observed cWorideis in rapid exchange with the bulk solution at
greater than kHz ftequencies and the chemical shifts are indicative of a solution-
like structural environment. The variable temperature 35CINMR RI data confirm
that sorption on C-S-H phases has a relatively small effect on the relaxation
(Figure 4).

These observations can be readily interpreted by reference to the chloride
exchange results for portlandite and the structure of synthetic, precipitated C-S-H,
which is based on that of tobermorite [24-31]. At low CIS ratios near 0.8, the C-
S-H structure is comparable to that of tobermorite, with composite layers
consisting of a central sheet of Ca-polyhedral sheet sandwiched between
dreirketten chains of silicate tetrahedra. Increasing CIS ratios are accommodated
first by omission of some of the so-called bridging tetrahedra in the chains and
then, at CIS ratios> 1.3, by omission of chain segments and replacement of them
by OH groups on the Ca-sheet. C-S-H is most commonly observed to have
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negative ~-potentials [17,18], as expected at the high pH of cement solutions, and
suggesting weak chloride sorption. MD modeling of chloride interaction with
tobermorite shows that cWoride is not attracted to the surface [II], in agreement
with this idea. AI is thought to substitute for Si on primarily the bridging
tetrahedra [32,33], increasing the negative surface charge due to this +3 for +4
charge substitution. Thus, low chloride exchange capacities are expected at low
CIS ratios, and especially for aluminous samples, as observed. The jennite
structure is thought to be broadly similar to that of tobermorite, but with every
other chain missing and replaced by OH groups, along with significant
rearrangement of the Ca-sheet [34]. Thus, it probably exposes surface sites
comparable to those of portlandite, consistent with its increased cWoride
exchange capacity. Based on the structural model for synthetic C-S-H described
above, the C-S-H sample with CIS = 1.5 is likewise expected to expose significant
numbers of Ca-OH sites, accounting for its comparatively large chloride exchange
capacity.

complexes and solution-like sites [16]. MD models for chloride binding on
Friedel's salt [12] show formation of such inner sphere sites and exchange of
chloride between them and the solution at ftequencies of about 2x 10-10 Hz, orders
of magnitude faster than required to cause the observed single, narrow peak.

Although the chloride exchange capacities for all the C-S-H samples are lower
than for portlandite, they are still significant, and for the jennite and the CIS = 1.5
sample probably more than a statistical monolayer. Here also, co-adsorption due
to ion cluster formation may contribute to the total exchange capacity. In addition,
170 MAS NMR results for synthetic C-S-H samples suggest the presence of Ca-
OH sites in the structure even at low CIS ratios [30], possibly on the broken layer
edges. Such sites may also contribute to the observed chloride exchange capacity.

Structurally, the AFm phases are related to portlandite by ordered substitution
of AI for Ca on 1/3 of the hexagonal sites, resulting in the permanent positive
layer charge. The large effect of Friedel's salt on the TI relaxation rates is, thus,
expected due to its strong affinity for chloride and the MD results suggesting
exchange between the surface and solution sites [10, 12J. The comparatively low
chloride exchange capacity of C4ACH11, which is equal to or less than that of
portlandite, depending on the solution concentration, is probably due to strong
attachment of carbonate on the surface sites, which would reduce the positive
surface charge and prevent binding. Carbonate has a charge of -2, compared to -
I for chloride, and is thus expected to bind much more strongly to the surface.

Ettringite (AFt) has a columnar structure with a permanent positive charge that
is compensated by intercolumnar sulfate and has positive ~-potentials [17,18,36].
Its chloride sorption density, however, is less than for

C4ACH11'and the variable
temperature 35CINMR TI results confirm that it has a significantly lower affinity
for chloride than portlandite and the AFm phases. MD models show that if the
sulfate ions are in their normal structural positions on the ettringite surface,
chloride is not attracted to it and does not exchange with the sulfate. As for
carbonate, sulfate has a charge of -2, and is expected to be more strongly attracted
to the surface than chloride. In addition, the chloride AFt phase is stable only at
low temperatures, <DoC, [35J suggesting that the structural conformation of
ettringite is more favorable for sulfate than for chloride.

CHLORIDE BINDING TO AFm AND AFt PHASES

The AFm phases have layer structures with positive charges compensated by
interlayer anions and correspondingly positive ~-potentials [17,18,35]. They are
expected to have significant chloride exchange capacities, as observed for

C4ACH1I(Figure 1). The 35CINMR results for C4ACH11yield exchange capacities
essentially identical to the exchange isotherm studies (Figure 3), and as for
portlandite and the C-S-H phases all the signals are quite narrow, symmetrical
peaks near 0 ppm. Thus, the cr is in solution-like environments and is in rapid
exchange with the bulk solution. The variable temperature 35Cl NMR results for
C4ACHIIshow a much smaller effect than for portlandite, but a larger effect than
for the C-S-H phases (Figure 4). The effect for Friedel's salt, the chloride-
containing AFm phase, is the largest for all the phases investigated (Figure 4).
The temperature dependence is different (negative slope) than for the other
phases, suggesting that its relaxatipq rates are controlled by large fluctuations in
the electric field gradient due to rapjd exchange of chloride between inner sphere
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